Secretion of the Rhizobium leguminosarum nodulation protein NodO by haemolysin-type systems.

نویسندگان

  • A K Scheu
  • A Economou
  • G F Hong
  • S Ghelani
  • A W Johnston
  • J A Downie
چکیده

The Rhizobium leguminosarum biovar viciae nodulation protein NodO is partially homologous to haemolysin of Escherichia coli and, like haemolysin, is secreted into the growth medium. The NodO protein can be secreted by a strain of E. coli carrying the cloned nodO gene plus the haemolysin secretion genes hlyBD, in a process that also requires the outer membrane protein encoded by tolC. The related protease secretion genes, prtDEF, from Erwinia chrysanthemi also enable E. coli to secrete NodO. The Rhizobium genes encoding the proteins required for NodO secretion are unlinked to nodO and are unlike other nod genes, since they do not require flavonoids or NodO for their expression. Although proteins similar to NodO were not found in rhizobia other than R. leguminosarum bv. viciae, several rhizobia and an Agrobacterium strain containing the cloned nodO gene were found to have the ability to secrete NodO. These observations indicate that a wide range of the Rhizobiaceae have a protein secretion mechanism analogous to that which secretes haemolysin and related toxins and proteases in the ENterobacteriaceae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rhizobium nodulation gene nodO encodes a Ca2(+)-binding protein that is exported without N-terminal cleavage and is homologous to haemolysin and related proteins.

Nodulation and host-specific recognition of legumes such as peas and Vicia spp. are encoded by the nodulation (nod) genes of Rhizobium leguminosarum biovar viciae. One of these genes, nodO, has been shown to encode an exported protein that contains a multiple tandem repeat of a nine amino acid domain. This domain was found to be homologous to repeated sequences in a group of bacterial exported ...

متن کامل

The Rhizobium Ieguminosarum biovar viciae nod0 gene can enable a nod€ mutant of Rhizobium leguminosarum biovar trifolii to nodulate vetch

Sciences, University of East Anglia, Norwich NR4 7TJ, UK 2 School of Biological Analysis of the nodulation characteristics of transposon-induced mutants of Rhizobium leguminosarum bv. viciae revealed that nodO and the closely-linked rhi genes contribute t o nodulation of peas (Pisum sativum) and the vetch Vicia hirsuta. Although mutation of nodO alone had no significant effect on nodulation of ...

متن کامل

Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapeptide repeat motif.

The prsDE genes encode a type I protein secretion system required for the secretion of the nodulation protein NodO and at least three other proteins from Rhizobium leguminosarum bv. viciae. At least one of these proteins was predicted to be a glycanase involved in processing of bacterial exopolysaccharide (EPS). Two strongly homologous genes (plyA and plyB) were identified as encoding secreted ...

متن کامل

Electrifying symbiosis.

A role of ion channels in the interactions between bacterial pathogens and their animal hosts is well established. In some cases, regulation of endogenous channels in the target species is disrupted by bacterial toxins, resulting in an alteration of ion flux and a perturbation of cellular function (1). In a more extreme example, hemolytic bacteria actually insert poreforming proteins into the p...

متن کامل

Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants.

Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 1992